
Overview
In this lesson, students use the Bluetooth radio capability
to send and receive data between micro: bits using Python.

Objectives
•	 Program the microbit using its Bluetooth radio capability
•	 Send and receive data between Microbits
•	 Integrate random numbers into a Microbit program

Materials
•	 micro:bit and micro-USB cord
•	 Computer with access to the internet

Approx. Time Required
1-2 hours

Micro:bit Python Programming
Communications

Cyber Connections
•	Programming – Students will
program in Python.

•	Hardware and Software – Stu-
dents will utilize small electron-
ics and learn how a computer is
programmed while using micro-
controllers.

This content is based upon work supported by the US Department of Homeland Security's Cybersecurity & Infrastructure Security Agen-
cy under the Cybersecurity Education Training and Assistance Program (CETAP).

Coding
Fundamentals

2Copyright © 2021 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

Communications
•	 So far with the Microbit we have seen a lot of cool capabilities of the

little board. It’s great to be able to do fun and interesting things as
individuals, but we can do even more impressive things when we work
together, communicate, and grow together. The designers of the Microbit
knew this and included a truly unique addition to the microbit: a way to
communicate wirelessly!

Included with the microbit is a tiny chip has a radio that supports
Bluetooth wireless communications. This little radio is much like the one
found in most phones, tablets and laptops. You can actually program the
Microbit through this Bluetooth link but it is even slower than the drag
and drop process. Another use for this Bluetooth radio is the ability for
Microbits to talk to one another and exchange data!

•	 First, we need to learn the new commands to control the Bluetooth radio
built into the Microbit. The first and most important is the line import
radio. This line, should be placed at the top of the program along with
the required line from microbit import *

See image below:

Just as the “from microbit import *” line is used to import
commands that let us interact with the microbit, the import radio
line gives us access to commands to control the Bluetooth radio module.
Both the microbit and radio blocks of code are known as libraries. A
library is a group of ready-made routines or functions that are commonly
used in conjunction with an object or device such as the radio. Simply
put, someone wrote functions or commands for using the radio and
stored them in a library so that others could use the functions without
having to write them each and every time we want to interact with the
device. The radio commands we will use in this lesson will not work
without importing the library first because they do not exist in the
standard microbit library.

3Copyright © 2021 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

•	 The second line students need to use the radio is a function that turns
the radio on. It is necessary in any program in which students plan on
using the radio. The function is radio.on(). In this command radio
tells the microbit what we want to interact with and .on() is a function
of radio, telling the microbit what to do with the object we want to
interact with.

This line should be typed after the import lines but before the main body
of code.

•	 Finally are the two main commands that the program will use to actually
communicate between Microbits:

First is radio.send(“message”) where the word message can be
replaced by whatever the microbit will actually send. The message must
be encased in double quotes.

The second is radio.receive()which receives messages from other
Microbits. The receiving microbit can then use the data from the message
in any way the program sees fit.

•	 Below is a simple program that displays exactly what is received.

from microbit import display, button_a, sleep
import radio

radio.on()

while True:
 if button_a.was_pressed():
 radio.send(‘A’)

 incoming = radio.receive()
 if incoming is not None:
 display.show(str(incoming))
sleep(300)
display.clear()

Note how we altered our “from microbit” line. Instead of importing
everything, which is what the “*” says to do, we list out only the
components from the microbit code we will make use of. This is
because the radio code takes up a lot of memory and the little Microbit
does not have enough room for it all.

The code works by first turning on the radio. Then checking to see if

4Copyright © 2021 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

button A was pressed. If it was pressed, it sends out “A” over the radio.
Whether the button was pressed or not, the next part says to store
whatever data was received in the variable incoming. A quick check
makes sure that incoming actually has something in it. If there’s nothing
in it, the value of incoming is None. By using the quick check to see
that incoming is not None, we then print whatever value is stored in the
variable. We then wait for a moment so the user can read the message on
the display. After the pause, we then clear the display and get ready for
another incoming message.

•	 Below is an example from the Microbit official website which uses the
keyword “flash” to tell the other Microbits to flash their screens. Each
microbit is listening for this keyword.

This activity is made particularly fun because it introduces some random
behavior. In the import segment, you will see the inclusion of the random
library. This allows the microbit to “roll the dice”. As it is currently written,
the Microbit has a 10% chance (1 in 10) of waiting 500ms then sending out
“flash” to all other microbits in the area.

This behavior gives a group of the microbits the appearance of a group
of fireflies or lightning bugs. In nature, the firefly signals others with
phosphorescent glow in its abdomen. Other fireflies signal back with
their glow. As more fireflies gather, the signaling glows make for one of
Nature’s best light shows.

This activity works best when you have more than 2 or 3 microbits
together and with dim lighting. One truly interesting thing is to notice
how the number of “echo” flash signals bounce around as the number of
microbits increases.

With just 2 microbits, what are the odds of an echo? What are the odds
of an echo creating another echo? How does adding a third microbit alter
these chances?

In the code, how can you increase the chances of an echo? How can you
decrease the chances if you have more microbits in a room? How else
might the program get modified?

5Copyright © 2021 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

import radio
import random
from microbit import display, Image, button_a, sleep

“flash” animation frames. (Advanced topic for now...)
flash = [Image().invert()*(i/9) for i in range(9, -1,
-1)]

radio.on()

while True:
 if button_a.was_pressed():
 radio.send(‘flash’)

 incoming = radio.receive()
 if incoming == ‘flash’:
 sleep(random.randint(50, 350))
 display.show(flash, delay=100, wait=False)

 if random.randint(0, 9) == 0:
 sleep(500)
 radio.send(‘flash’)

